
Series III Programmer
Operation Manual

www.datakey.com

Table of Contents
Hardware Background.. 2

Sample Applications... 4

Acronymns/Abbreviations... 20

Series III Programmer Operation Manual

2

Hardware Background
Datakey Serial Memory devices each contain a commercially available
memory chip. The memory chip is designed to:
	 •	 operate within a specified supply voltage range,
	 •	 communicate via a specific protocol (SPI Flash, SPI EEPROM, I2C, or 	
		 Microwire), and
	 •	 have a specified memory capacity (i.e. size) – usually measured 	
		 in bits.

The portable memory devices are available are available in several different
form factors: key, Slimline token, Plug token, and Bar token. Each shape
has a corresponding receptacle that allows for quick insertion/removal and
electrical connection to the device. See the appropriate protocol’s interface
specification document for the various device shapes, their associated
receptacle pin numbering conventions, and signal locations.

The Series III Programmer is a microcontroller-based product that contains
the firmware and interface circuitry necessary to allow a host computer
to communicate (via USB) with a Datakey key or token that uses the SPI
Flash, SPI EEPROM, I2C, or Microwire protocol. Once power is applied to the
Series III Programmer (via the host computer’s USB port), its two-color
LED will illuminate. The LED will be red while reading, writing, or erasing of
the key is in progress; green, otherwise. If the token is withdrawn from the
Series III Programmer while the LED is red, data corruption might occur.

Datakey memory devices have a family name embossed on them that
indicates their communications protocol, memory technology and form
factor. In addition, they have a size code, a voltage code, and a date code
embossed on them. See chart on page 3.

square
head key

round
head key

slim token

DK IIK, ISK,
LCK, SFK,

SFK5V, SSK

IIT, IST,
LCS, SFK,
SLT, SST

extended
slim token

plug bar

IIX, ISX, LCX,
SFX, SSX

ISP, KSD, SSP ISB, LCB, SSB

square
head key

round
head key

slim token

DK IIK, ISK,
LCK, SFK,

SFK5V, SSK

IIT, IST,
LCS, SFK,
SLT, SST

extended
slim token

plug bar

IIX, ISX, LCX,
SFX, SSX

ISP, KSD, SSP ISB, LCB, SSB

square
head key

round
head key

slim token

DK IIK, ISK,
LCK, SFK,

SFK5V, SSK

IIT, IST,
LCS, SFK,
SLT, SST

extended
slim token

plug bar

IIX, ISX, LCX,
SFX, SSX

ISP, KSD, SSP ISB, LCB, SSB

key
square head

key
round head

slimline
token

DK IIK, ISK,
LCK, SFK,

SFK5V, SSK

IIT, IST,
LCS, SFT,
SLT, SST

extended
slimline
token

plug bar

IIX, ISX, LCX,
SFX, SSX

ISP, KSD, SSP ISB, LCB, SSB

ISP, KSD, SSP

Series III Programmer Operation Manual

3

Although the memory chip within a device has a range of voltages over which it can
operate, the Series III Programmer can only be configured to apply either 3.3 volts or 5
volts to the device.

code size in bits bytes
A 1 Kb 128 bytes
B 2 Kb 256 bytes
C 4 Kb 512 bytes
D 8 Kb 1 KB
E 16 Kb 2 KB
F 32 Kb 4 KB
G 64 Kb 8 KB
H 128 Kb 16 KB
I 256 Kb 32 KB
J 512 Kb 64 KB
K 1 Mb 128 KB
L 2 Mb 256 KB
M 4 Mb 512 KB
N 8 Mb 1 MB
O 16 Mb 2 MB
P 32 Mb 4 MB
Q 64 Mb 8 MB
R 128 Mb 16 MB
S 256 Mb 32 MB
T 512 Mb 64 MB
U 1 Gb 128 MB
V 2 Gb 256 MB
W 4 Gb 512 MB
X 8 Gb 1 GB
Y 16 Gb 2 GB
Z 32 Gb 4 GB

Key/Token/Plug Size Codes

Date Codes
month year

1 Jan 1 2001 2011 2021
2 Feb 2 2002 2012 2022
3 Mar 3 2003 2013 2023
4 Apr 4 2004 2014 2024
5 May 5 2005 2015 2025
6 Jun 6 2006 2016 2026
7 Jul 7 2007 2017 2027
8 Aug 8 2008 2018 2028
9 Sep 9 2009 2019 2029
0 Oct 0 2010 2020 2030
N Nov
D Dec

NFX and RUGGEDrive Size Codes
code size in bits bytes

A 1 Gb 128 MB
B 2 Gb 256 MB
C 4 Gb 512 MB
D 8 Gb 1 GB
E 16 Gb 2 GB
F 32 Gb 4 GB
G 64 Gb 8 GB
H 128 Gb 16 GB
I 256 Gb 32 GB
J 512 Gb 64 GB
K 1 Tb 128 GB
L 2 Tb 256 GB
M 4 Tb 512 GB
N 8 Tb 1 TB

Voltage Codes
code voltage range
Blank 4.5 - 5.5 V

5 3.0 - 3.6 V
4 2.7 - 5.5 V
3 2.7 - 3.6 V
2 1.8 - 3.6 V

MEMORY SIZE

VOLTAGE CODE

FAMILY NAME
KEY MARKING

TOKEN MARKING

FAMILY NAME

VOLTAGE CODE

MEMORY SIZE

MONTH DATE CODE

YEAR DATE CODE

YEAR DATE CODE

MONTH DATE CODE

LEGACY TOKEN

FAMILY NAME

MEMORY SIZE

EXTENDED TOKEN MARKING

FAMILY NAME

FAMILY NAME*

* LEGACY INFORMATION: NO
MARKS OR BLACK TOP IS 1 KB,
5 V MICROWIRE INTERFACE

APPLIES TO MANUFACTURING
DATES OF 4/2003 - 3/2005

VOLTAGE CODE

MEMORY SIZE

PLUG MARKING

VOLTAGE CODE

MEMORY SIZE
MONTH DATE CODE

YEAR DATE CODE

RUGGEDRIVE TOKEN MARKING

FAMILY NAME

MEMORY SIZE

VOLTAGE CODE

MONTH DATE CODE

YEAR DATE CODE

IC MEMORY SIZE

YEAR DATE CODE PIN

MONTH DATE CODE PIN

VOLTAGE PIN

FAMILY NAME INSERT

BAR MARKING

Series III Programmer Operation Manual

4

C++ Implementation
To start the application, do the following:
	 •	 attach the Series III Programmer to the host computer’s USB 2.0 port, then
	 •	 double-click the Series III Programmer desktop icon on the host computer.

Configuration
Each time the sample application is started, it will prompt the user to
configure the attached Series III Programmer for the type of device that is
to be expected. This is a crucial step, it tells the Series III Programmer:
	 •	 what protocol is to be used for communication,
	 •	 what supply voltage to apply to the device (either 3.3 or 5 volts), and
	 •	 the memory capacity of the device.
The sample application cannot query this information from an attached
device, it must be told what to expect. The Series III Programmer does
remember the type of device for which it was last configured and the
corresponding 5-character code is displayed in the Code text box of the
Configure Programmer form.

Expand the appropriate protocol family and select the specific device to
be used in the Series III Programmer. Note that the same 5-character
code may be assigned to more than one particular device in the list. That’s
because the electrical interface to the devices may be the same, even
though their physical shapes are different.

Once the desired configuration is selected, click OK. In this example, the
Series III Programmer is being configured for an SFK 2Mb device.

Note that if the Series III Programmer is configured for a Serial Flash
device, a message will be displayed, reminding the user to manually
erase the device before overwriting any existing data. EEPROM devices
implement an automatic erase feature whenever new data is written; Serial
Flash does not.

All of the Datakey devices that utilize Serial Flash memory have family names that begin with the letters “SF” (e.g., SFK, SFT, SFX).

Sample Applications
There are two different designs within the sample applications included on the flash drive/download: the C++ implementation
and the C#/Visual Basic implementation. The applications have many features in common and some features that are unique to
one or the other. The operation of each of the applications is described separately. Refer to the correct corresponding section.

Series III Programmer Operation Manual

5

Overview
The Sample Cpp App pictured below has:
	 •	 a menu bar at the top that offers a choice of File, Configure, Function, and Help,
	 •	 a message window that shows the results of operations recently performed and the general status of the application,
	 •	 a Data group box where address limits and data patterns can be specified and where read, write, and compare 		
		 operations can be performed,
	 •	 an Erase group box where individual sectors or the entire device can be targeted for erasure,
	 •	 an Electronic Signature group box where the signature of a Serial Flash device can be displayed,
	 •	 a Block Protect (SPI) group box where the block protect bits of an SPI device can be read and set/cleared,
	 •	 a KeyLink III group box where the Series III Programmer can be reconfigured or reset and where the on-line/off-line 		
		 status of the Series III Programmer can easily be determined,
	 •	 a status bar that indicates success (green), failure (red), or progress (blue) of the pending operation, and
	 •	 an information bar where information about the software, firmware, configuration, and hardware status are displayed.

Note that not all controls are available or appropriate for all types of devices.

Series III Programmer Operation Manual

6

Insertion
When a key is inserted into the receptacle, an image of a key will be
displayed within the KeyLink III group box. (Note that for an actual key
type of device, the key must be inserted into the receptacle and turned a
quarter turn clockwise before the image of a key will appear.) Behind the
scenes, the application is polling the status of the LOFO (last on, first off)
signal and when it goes low, the image is displayed.

Utilizing the default values in the Data group box and clicking the Write button and then the Read button, a repeating data
pattern is first written to and then read back from the inserted key. As per the default values, writing/reading begins at address
zero and continues sequentially for 128 bytes.

Because none of the Hex checkboxes in the Data group box were checked, the specified Start Address and Number of
Bytes are interpreted as decimal values and the Data Pattern is converted to ASCII data.

Series III Programmer Operation Manual

7

Utilizing the same default values in the Data group box, but checking the Hex checkbox associated with Data Pattern and
then clicking the Write button and then the Read button, would display the data shown above. Note that in this case the Data
Pattern would be interpreted as a sequence of hexadecimal values and written directly to the key as binary, without being
converted to its equivalent ASCII codes.

CAUTION: Attempting to send general text as the Data Pattern and telling the application to interpret it as hexadecimal
characters will yield seemingly unpredictable behavior.

If, within the Data group box, the Page Write button is clicked instead of the Write button, the Number of Bytes to be written
must be less than or equal to the Page Size of the device. The Page Size is displayed within the Data group box.

If, within the Data group box, the File Write… button is clicked instead of the Write button, the application will prompt for and
allow browsing to the file to be written.

Series III Programmer Operation Manual

8

Manual Erasure (Serial Flash only)
Here’s an example of the type of behavior that can be expected if a Serial Flash device is not manually erased before being
rewritten. It is assumed that the first example of writing 128 bytes of data to the key was, in fact, performed.

Without erasing the initial data, perform the following additional operations:
	 •	 enter the values shown above in the Data group box for Start Address, Number of Bytes, and Data Pattern,
	 •	 click the Write button,

	 •	 enter the values shown above in the Data group box for Start Address and Number of Bytes, and
	 •	 click the Read button.

Series III Programmer Operation Manual

9

Now look at the 128 bytes of data that was read from the device. The first 64 bytes still exhibit the same repeating pattern of
data that was written to them initially, but the final 64 bytes show neither the initial nor the subsequent data pattern. What’s
going on here?

The answer is that the following rules are obeyed when overwriting data in a Serial Flash device:
	 •	 binary ones in the initial data can remain as binary ones in the subsequent data,
	 •	 binary ones in the initial data can be demoted to binary zeroes in the subsequent data,
	 •	 binary zeroes in the initial data can remain as binary zeroes in the subsequent data, but
	 •	 binary zeroes in the initial data cannot be promoted to binary ones in the subsequent data.

More often than not, what is wanted is to manually erase the previous data before writing new data to any given memory
location. That is the only way to promote binary zeroes in the initial data back to binary ones. When any byte is erased, all its
bits go to binary ones.

The scope of an erasure can be limited to a single sector at a time or applied to the entire memory space simultaneously. This
can be done using the controls in the Erase group box. To erase a single sector, specify the sector number and then click the
Sector Erase button. To erase the entire memory space, click the Bulk Erase button.

Block Protect (SPI only)
Sections of an SPI EEPROM/Flash memory space can be
protected from writing and erasure by utilizing the Block
Protect bits, BP0 and BP1. Depending on the memory
capacity of the device, there may even be a third Block Protect
bit, BP2. Only SPI memory offers Block Protect bits.

SPI EEPROM and SPI Flash memory devices have their
memory space organized into sectors (i.e., blocks or chunks)
of uniform size. That is, the size is uniform throughout any
given device, but the number of sectors and the size of a
sector may vary from one device to another – depending
on the total memory capacity of the device. Setting various
combinations of the Block Protect bits write-protects various
combinations of sectors in the memory space. When all of the
Block Protect bits are cleared, none of the sectors is write-
protected. Setting all of the available Block Protect bits write-
protects the entire memory space of the device. The table to
the right shows which sectors are write-protected (for devices
of various memory capacities) based on the combination of
Block Protect bits that are set/cleared.

Series III Programmer Operation Manual

10

Sector numbering begins at zero – corresponding to the lowest memory
address. Sectors are protected in a top-down fashion. The top-most
sector(s) represents the smallest portion of the total memory that can be
protected.
	
Note that when initially displayed, the Block Protect (SPI) group box
indicates that neither (none) of the Block Protect bits is set – this indication
is not necessarily accurate. Click on the Read BP Bits button to update the
status of the BP0, BP1 (and BP2) checkboxes so that they will be accurate.
A checked box indicates that the corresponding bit is set (i.e.,
high, one) and an unchecked box indicates that the corresponding bit is
cleared (i.e., low, zero). The status of the Block Protect bits can be set
manually by checking/clearing the BP0, BP1 (and BP2) checkboxes as
desired and then clicking the Write BP Bits button.

Note that when a checkbox is checked/cleared, the graphics are updated
immediately, but the Block Protect bits remain unaltered until the Write BP
Bits button is clicked.

Address Pattern
If no data is placed within the Data Pattern text box, the application will
automatically generate a sequence of increasing data values for use as the
data pattern and will re-label the text box Address Pattern.

Shown here is a sample of the address pattern that the application automatically generates.

Electronic Signature (Serial Flash only)
Only Serial Flash devices have electronic signatures. To read the electronic
signature of a Serial Flash device, click the Read button within the
Electronic Signature group box. (See the SPI Flash Interface Specification
for more information.)

Series III Programmer Operation Manual

11

Menu Bar
From within the File menu, the only two options are clearing the message
window (Clear Screen) or closing the Sample Cpp App (Exit).

From within the Configure menu, the 5-character configuration code
(which is always visible in the information bar at the bottom of the GUI)
can be displayed in the message window by clicking View Programmer
Configuration.

Clicking View Firmware Revision will display a message similar to what
is shown here.

From within the Function menu, the usual operations as well as some
additional operations are available. Read Serial Number is only
applicable to IIK/IIT devices. Write will permit entering a longer sequence
of values, be they ASCII or hexadecimal (see the next screen shot).

This is the window displayed by clicking Write within the Function menu.
An example of a longer ASCII character string is shown.

For information about the Sample Cpp App, click About within the Help
menu (see the next screen shot). To display a list of all device descriptors
and their associated 5-character codes, click Codes.

Clicking About in the Help menu will display a message similar to this.

Series III Programmer Operation Manual

12

C# and Visual Basic Implementation
To start the application, do the following:
	 •	 attach the Series III Programmer to the host computer’s USB 2.0 port, then
	 •	 double-click the Series III Programmer desktop icon on the host computer.		

Configuration
Each time the sample application is started, it will prompt the user to
configure the attached Series III Programmer for the type of device
that is to be expected. This is a crucial step, since it tells the Series III
Programmer:
	 •	 what protocol is to be used for communication,
	 •	 what supply voltage to apply to the device (either 3.3 	
		 or 5 volts), and
	 •	 the memory capacity of the device.
The sample application cannot query this information from an attached
device, it must be told what to expect. The Series III Programmer does
remember the type of device for which it was last configured and the
corresponding 5-character code is displayed in the Code text box of the
Configure Programmer form.

Expand the appropriate protocol family and select the specific device to
be used in the Series III Programmer. Note that the same 5-character
code may be assigned to more than one particular device in the list. That’s
because the electrical interface to the devices may be the same, even
though their physical shapes are different.

Once the desired configuration has been selected, click the OK button. In
this example the Series III Programmer is being configured for an SFK
2Mb device.

Note that if the Series III Programmer is configured for a Serial Flash
device, a message will be displayed, reminding the user to manually
erase the device before overwriting any existing data. EEPROM devices
implement an automatic erase feature whenever new data is written; Serial
Flash does not.

All of the Datakey devices that utilize Serial Flash memory have family names that begin with the letters “SF” (e.g., SFK, SFT, SFX). 

Series III Programmer Operation Manual

13

The Sample VB App pictured above has:
	 •	 a Transcript Window at the top that shows the results of operations recently performed and the general status of 		
		 the application,
	 •	 a Data group box where address limits and data patterns can be specified and where read, write, and compare 			
		 operations can be performed,
	 •	 an Erase group box where individual sectors or the entire device can be targeted for erasure,
	 •	 a Block Protect group box where the block protect bits of an SPI device can be read and set/cleared,
	 •	 a KeyLink III group box where the Series III Programmer can be reconfigured or reset and where the on-line/off-line 		
		 status of the Series III Programmer can easily be determined,
	 •	 an Extended Data window where larger amounts of data can be entered and written to the device, and
	 •	 a status grid where information about the software, firmware, configuration, and hardware status are displayed – 		
		 including an electronic signature for Serial Flash devices (see the SPI Flash Interface Specification).

Note that not all controls are available or appropriate for all types of devices.

Overview

Series III Programmer Operation Manual

14

Insertion
When a key is inserted into the receptacle, an image of a key will be
displayed within the KeyLink III group box. (Note that for an actual key
type of device, the key must be inserted into the receptacle and turned a
quarter turn clockwise before the image of a key will appear.) Behind the
scenes, the application is polling the status of the LOFO (last on, first off)
signal and when it goes low, the image is displayed.

Note that in addition to the key image, a green status bar is also displayed. Additionally, none of the status grid blocks are pink
– most of them are now green.

Utilizing the default values in the Data group box and clicking the Write button and then the Read button, a repeating data
pattern is first written to and then read back from the inserted key. As per the default values, writing/reading begins at address
zero and continues sequentially for 128 bytes.

Because none of the Hex checkboxes in the Data group box were checked, the specified Start Address and Number of
Bytes are interpreted as decimal values and the Data Pattern is converted to ASCII data.

Series III Programmer Operation Manual

15

Utilizing the same default values in the Data group box, but checking the Hex checkbox associated with Data Pattern and
then clicking the Write button and then the Read button, would display the data shown above. Note that in this case the Data
Pattern would be interpreted as a sequence of hexadecimal values and written directly to the key as binary, without being
converted to its equivalent ASCII codes.

CAUTION: Attempting to send “TestData” as the Data Pattern and telling
the application to interpret it as hexadecimal characters will throw an
unhandled exception. If this happens, click the Continue button.

If, within the Data group box, the Page Write button is clicked instead of
the Write button, the Number of Bytes to be written must be less than
or equal to the Page Size of the device. The Page Size is displayed in the
bottom row of the status grid.

If, within the Data group box, the File Write button is clicked instead of the
Write button, the application will prompt for and allow browsing to the file
to be written.

Series III Programmer Operation Manual

16

Manual Erasure (Serial Flash only)

Here’s an example of the type of behavior that can be expected if a Serial Flash device is not manually erased before being
rewritten. It is assumed that the first example of writing 128 bytes of data to the key was, in fact, performed.

Now (without erasing the initial data) perform the following additional operations:
	 •	 enter the values shown above in the Data group box for Start Address, Number of Bytes, and Data Pattern,
	 •	 click the Write button,

Series III Programmer Operation Manual

17

	 •	 enter the values shown above in the Data group box for Start Address and Number of Bytes, and
	 •	 click the Read button.

Now look at the 128 bytes of data that was read from the device. The first 64 bytes still exhibit the same repeating pattern of
data that was written to them initially, but the final 64 bytes show neither the initial nor the subsequent data pattern. What’s
going on here?

The answer is that the following rules are obeyed when overwriting data in a Serial Flash device:
	 •	 binary ones in the initial data can remain as binary ones in the subsequent data,
	 •	 binary ones in the initial data can be demoted to binary zeroes in the subsequent data,
	 •	 binary zeroes in the initial data can remain as binary zeroes in the subsequent data, but
	 •	 binary zeroes in the initial data cannot be promoted to binary ones in the subsequent data.

More often than not, what is wanted is to manually erase the previous data before writing new data to any given memory
location. That is the only way to promote binary zeroes in the initial data back to binary ones. When any byte is erased, all its
bits go to binary ones.

The scope of an erasure can be limited to a single sector at a time or applied to the entire memory space simultaneously. This
can be done using the controls in the Erase group box. To erase a single sector, specify the sector number and then click the
Sector Erase button. To erase the entire memory space, click the Bulk Erase button.

Series III Programmer Operation Manual

18

Block Protect (SPI only)
Sections of an SPI EEPROM/Flash memory space can be protected from
writing and erasure by utilizing the Block Protect bits, BP0 and BP1.
Depending on the memory capacity of the device, there may even be a third
Block Protect bit, BP2. Only SPI memory offers Block Protect bits.

SPI EEPROM and SPI Flash memory devices have their memory
space organized into sectors (i.e., blocks or chunks) of uniform
size. That is, the size is uniform throughout any given device,
but the number of sectors and the size of a sector may vary
from one device to another – depending on the total memory
capacity of the device. Setting various combinations of the Block
Protect bits write-protects various combinations of sectors in the
memory space. When all of the Block Protect bits are cleared,
none of the sectors is write-protected. Setting all of the available
Block Protect bits write-protects the entire memory space of the device.
The table to the right shows which sectors are write-protected (for devices
of various memory capacities) based on the combination of Block Protect
bits that are set/cleared.

Sector numbering begins at zero – corresponding to the lowest memory
address. Sectors are protected in a top-down fashion. The top-most
sector(s) represents the smallest portion of the total memory that can be
protected.

Note that when initially displayed, the Block Protect group box indicates
that neither (none) of the Block Protect bits is set – this indication is not
necessarily accurate. Click on the Read BP Bits button to update the
status of the BP0, BP1 (and BP2) checkboxes so that they will be accurate.
A checked box indicates that the corresponding bit is set (i.e., high, one) and
an unchecked box indicates that the corresponding bit is cleared (i.e., low,
zero). The status of the Block Protect bits can be set manually by checking/
clearing the BP0, BP1 (and BP2) checkboxes as desired and then clicking
the Write BP Bits button.

Note that when a checkbox is checked/cleared, the graphics are updated
immediately, but the Block Protect bits remain unaltered until the
Write BP Bits button is clicked.

Series III Programmer Operation Manual

19

Address Pattern
If no data is placed within the Data Pattern text box, the application will
automatically generate a sequence of increasing data values for use as the
data pattern and will re-label the text box Address Pattern.

Shown here is a sample of the address pattern that the application automatically generates.

Extended Data
The application’s Extended Data window allows manual entry of larger
amounts of data or a simple copy-and-paste operation. Click the Write
Extended Data button to copy the window’s contents to the key. The
Number of Bytes written will automatically be calculated.

In order to see a plain text display of the data read from the key, clear the
Hex checkbox in the Erase group box. That will prevent the application
from displaying the address labels and hexadecimal values associated with
the data it displays in the Transcript Window.

Above is an example of what the plain text will look like in the Transcript Window.Click the Read button in the Data group box
to display the text. To clear text from the Transcript Window, click the Transcript button in the Erase group box.

ATEK Access Technologies
10025 Valley View Road, Ste. 190
Eden Prairie, MN 55344 U.S.A.

PH: 1.800.523.6996
FAX: 1.800.589.3705
 +1.218.829.9797

www.atekaccess.com

223-0100-000 Rev. E 7/21

©2016 ATEK Access Technologies, LLC. All Rights Reserved. Datakey images and marketing materials are protected by various patents, copyrights
and/or trademarks. ATEK assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or
specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to
patents or other intellectual property of ATEK are granted by the Company in connection with the sale of Datakey products, expressly or by implication.

Microsoft is a registered trademark of Microsoft Corporation. Windows is a trademarks of Microsoft Corporation. All other brand
names and product names used in this manual are trademarks, registered trademarks, or trade names of their respective holders.

Series III Programmer Operation Manual

Acronyms/Abbreviations
ASCII		 American Standard Code for Information Interchange
CD		 Compact Disc
EEPROM		 Electrically Erasable Programmable Read-Only Memory
Gbits/bytes		 Gigabits/bytes – may indicate a multiplier of 109 (1,000,000,000) or 230 (1,073,741,824) bits/bytes
GUI		 Graphical User Interface
I2C		 Inter-Integrated Circuit
Kbits/bytes	 Kilobits/bytes – may indicate a multiplier of 103 (1,000) or 210 (1,024) bits/bytes
LED		 Light-Emitting Diode
Mbits/bytes	 Megabits/bytes – may indicate a multiplier of 106 (1,000,000) or 220 (1,048,576) bits/bytes
SPI		 Serial Peripheral Interface
USB		 Universal Serial Bus

